

FX Core Instruction Set

V1.0 Feb 2020

FX Core Instruction Set Document Version 1.0 February 2020

Page 2 of 52

Table of Contents
Introduction .. 6

Block Diagram ... 7

Registers and Memory .. 9

FLAGS Register .. 10

Instruction Format .. 10

Math Operations ... 13

ABS – Absolute value of a core register .. 14

CLRACC64 – Clear the 64-bit accumulator .. 14

ADDI – Add a 16bit signed integer to 32 bit core register, not saturated (modulo 232) 14

ADD – Unsigned addition of two core registers, not saturated (modulo 232) .. 14

ADDS – Signed addition of two core registers, saturated ... 14

ADDSI – Signed addition of 32-bit S.31 core register with 16-bit S.15 (MSB aligned), saturated 15

SUB – Unsigned subtraction of two core registers, not saturated (modulo 232) 15

SUBS – Signed subtraction of two core registers, saturated .. 15

SL – Shift left logical using an immediate 5-bit value ... 16

SLR – Shift left logical using the 5-LSBs of a core register .. 16

SLS – Shift left arithmetic with saturation using an immediate 5-bit value ... 16

SLSR – Shift left arithmetic with saturation using the 5-LSBs of a core register 16

SR – Shift right logical using an immediate 5-bit value ... 17

SRR – Shift right logical using the 5-LSBs of a core register .. 17

SRA – Shift right arithmetic using an immediate 5-bit value .. 17

SRAR – Shift right arithmetic using the 5-LSBs of a core register ... 17

MACRR – Multiply and accumulate using 64-bit accumulator (S.63), 32-bit (S.31) x 32-bit (S.31)

multiply with saturation.. 18

MACRI – Multiply and accumulate using 64-bit accumulator (S.63), 32-bit (S.31) x 16-bit (S.15)

coefficient multiply ... 18

MACRD – Multiply and accumulate using 64-bit accumulator (S.63), 32-bit (S.31) x 16-bit (S.15) delay

memory multiply ... 18

MACID – Multiply and accumulate using 64-bit accumulator (S.63), 8-bit (S.7) coefficient multiply x 16-

bit (S.15) delay memory .. 19

MACHRR – Multiply and accumulate using 64-bit accumulator (S3.60), 32-bit (S.31) x 32-bit (S.31

shifted to S3.28) multiply .. 19

MACHRI – Multiply and accumulate using 64-bit accumulator (S3.60), 32-bit (S.31) x 16-bit (S.15

shifted right and zero appended to S3.28) multiply ... 19

FX Core Instruction Set Document Version 1.0 February 2020

Page 3 of 52

MACHRD – Multiply and accumulate using 64-bit accumulator (S3.60), 32-bit (S.31) x 16-bit (S.15

shifted right to S3.15 and zero appended to S3.28) delay memory ... 20

MACHID – Multiply and accumulate using 64-bit accumulator (S3.60), 8-bit (S.7 zero appended to

S.32) coefficient x 16-bit (S.15 shifted right to S3.15 and zero appended to S3.28) delay memory

multiply ... 20

MULTRR – Saturated multiply of two core registers, 32-bit (S.31) x 32-bit (S.31), 32 MSBs of the 64-bit

product in ACC32 .. 20

MULTRI – Multiply to 32-bit accumulator (S.31), 32-bit (S.31) x 16-bit (S.15) multiply 21

NEG – Negate a core register, 2’s complement saturated ... 21

LOG2 – Calculate the log base 2 of the absolute value of a register .. 21

EXP2 – Calculate 2^ value of a register ... 21

Copy Operations ... 22

CPY_CC – Copy from one core register to another ... 23

CPY_CM – Copy from MREG register to core register .. 23

CPY_CS – Copy from special function register (SFR) to core register ... 23

CPY_MC – Copy from core register to MREG register .. 23

CPY_SC – Copy from core register to special function register (SFR) ... 24

CPY_CMX – Copy from MREG register to core register using a second core register as the index

register to address the MREG ... 24

Load/store Operations .. 25

RDACC64U – Copy the upper 32-bits from the 64-bit accumulator to a core register 26

RDACC64L – Copy the lower 32-bits from the 64-bit accumulator to a core register 26

LDACC64U – Load the upper 32-bits of the 64-bit accumulator from a core register 26

LDACC64L – Load the lower 32-bits of the 64-bit accumulator from a core register 26

RDDEL – Read from delay memory into a core register using an immediate address 26

WRDEL – Write to delay memory from a core register using an immediate address 27

RDDELX – Read from delay memory into a core register using a second core register as the index

register to address the delay memory .. 27

WRDELX – Write the value in a core register to delay memory using a second core register as the

index register to address the delay memory .. 27

RDDIRX – Read from delay memory into a core register using a second core register as the index

register to address the delay memory without adding address counter ... 27

WRDIRX – Write the value in a core register to delay memory using a second core register as the index

register to address the delay memory without adding address counter ... 28

SAT64 – Copy the 32 MSBs from ACC64 (S3.60), shift left 3 bits and saturate to an S.31 format and

place into core register ... 28

FX Core Instruction Set Document Version 1.0 February 2020

Page 4 of 52

WRDLD – Load a 16-bit immediate value to the upper 16-bits of a core register, 0s to LSBs 28

Logic Operations ... 29

INV – Invert (1’s comp) core register .. 30

OR – Bitwise OR of 2 core registers to ACC32 .. 30

ORI – Bitwise OR of core register with a 16-bit immediate value 0 extended to ACC32 30

AND – Bitwise AND of 2 core registers to ACC32 ... 30

ANDI – Bitwise AND of core register with a 16-bit immediate value 0 extended to ACC32 31

XOR – Bitwise XOR of 2 core registers to ACC32 .. 31

XORI – Bitwise XOR of core register with a 16-bit immediate value 0 extended to ACC32 31

JGEZ – Jump if core register value is >= 0 ... 31

JNEG – Jump if core register value is < 0 .. 32

JNZ – Jump if core register value is != 0 .. 32

JZ – Jump if core register value = 0 ... 32

JZC – Jump if core register value is different sign from acc32 .. 32

JMP – Jump always ... 33

Extended Operations ... 34

APA – First instruction for all-pass filter with fixed values ... 35

APB – Second instruction for all-pass filter with fixed values ... 35

APRA – First instruction for all-pass filter using register for coefficient value 35

APRB – Second instruction for all-pass filter using register for coefficient value 36

APRRA – First instruction for all-pass filter using register for both values ... 36

APRRB – Second instruction for all-pass filter using register for both values .. 36

APMA – First instruction for all-pass filter using MREG for delay .. 36

APMB – Second instruction for all-pass filter using MREG for delay .. 37

CHR – Chorus on delay mem ... 37

PITCH – Pitch shift on delay mem ... 37

SET – Set a user bit high or low using the selected bit of a register ... 38

INTERP – Do a linear interpolation between two samples in a delay line .. 38

Reserved Words .. 39

Core Registers ... 40

Non-core CPU Registers .. 40

SRAM Based Registers .. 40

Special Function Registers .. 40

FX Core Instruction Set Document Version 1.0 February 2020

Page 5 of 52

Other Reserved Words and their value .. 41

Assembler Directives ... 44

.EQU – Equate a name to a value ... 45

.RN – Rename a register ... 45

.MEM – Declare a memory block .. 45

.CREG – Set a core register to an initial value when program is loaded ... 45

.MREG – Set a memory register to an initial value when program is loaded ... 46

.SREG – Set a special function register to an initial value when program is loaded 46

.L – Use the lower 16-bits of a 32-bit word in an instruction (appended to value) 46

.U – Use the upper 16-bits of a 32-bit word in an instruction (appended to value) 46

Tap Tempo Operation ... 47

Memory Management .. 49

FX Core Instruction Set Document Version 1.0 February 2020

Page 6 of 52

Introduction

FX Core Instruction Set Document Version 1.0 February 2020

Page 7 of 52

Block Diagram

The FX Core has 3 sets of registers, 20 DSP/ALU registers (19 core and a “non-core” 64-bit accumulator

ACC64) , 128 32-bit MREG registers and special function registers (SFR). DSP/ALU registers are faster for

the DSP/ALU to access and use.

The number of instructions that can be executed in a single sample period is dependent on the

instructions used. Instructions take one or more clocks to execute so the total number of clocks a

program takes depends on the mix of instructions. Programs have about 3500 clocks per sample period

at 48KHz sample rate. There are more clocks available at lower sample rates.

The instruction RAM can hold 1024 instructions but the number of instructions that can be executed in a

sample period depends on the mix of instructions and the sample rate the FXCore is being run at.

FX Core Instruction Set Document Version 1.0 February 2020

Page 8 of 52

The FX Core assembler will estimate how many clocks have been used and warn the user when it

exceeds 90% when the program is assembled.

The internal FLASH can hold 16 programs, when a program is selected the program is loaded into the

instruction RAM and executed from there. Additionally each program has an associated header that will

preload values into the core registers, MREG registers and some of the SFRs. This allows users to set

initial values in their programs without wasting instructions.

On program change, while the instruction RAM is being loaded with the new program, the outputs are

muted, the delay RAM is cleared and the initial values from the program headers are loaded into their

target registers.

FX Core Instruction Set Document Version 1.0 February 2020

Page 9 of 52

Registers and Memory
DSP/ALU core registers are 32-bit and are called R0 to R15, ACC32 and FLAGS. While ACC64 resides in

the core of the chip it is not part of the core register bank and is not considered a core register.

Name Encoding Type Remark

R0 00000 R/W General use

R1 00001 R/W General use

R2 00010 R/W General use

R3 00011 R/W General use

R4 00100 R/W General use

R5 00101 R/W General use

R6 00110 R/W General use

R7 00111 R/W General use

R8 01000 R/W General use

R9 01001 R/W General use

R10 01010 R/W General use

R11 01011 R/W General use

R12 01100 R/W General use

R13 01101 R/W General use

R14 01110 R/W General use

R15 01111 R/W General use/PARAM0

ACC32 10000 R/W General use/result

FLAGS 10001 R Read only

R0 – R15 are general purpose registers, ACC32 can be used as a general register but is also used as the

destination register for many instructions. FLAGS is a read only register and contains flags useful to the

user program. In some instructions more information is required than can fit in the 32-bit instruction

field, in these cases R15 is used as an additional parameter register referred to as PARAM0.

ACC64 is the 64-bit accumulator for the 32x32 multiplier.

MREG registers are a bank of 128 32-bit registers called MR0 to MR127 that can be used for additional

32-bit storage. These registers can also be read indirectly by the CPY_CMX command allowing the

registers to be preloaded by the .MREG directive and used as a lookup table.

Delay RAM is a 32Kx16-bit block and is the slowest to access.

Special function registers (SFRs), while not shown in the block diagram, are a collection of registers that

provide specific functions or information to a program. Some SFRs are read only while others are write

only. For a complete list of SFRs please see the FXCore datasheet or the “Special Function Registers”

portion of the “Reserved Words” section later in this document.

FX Core Instruction Set Document Version 1.0 February 2020

Page 10 of 52

FLAGS Register
The FLAGS register contains status flags that may be useful to a user program, this is a 16-bit LSB aligned

register so flag values may be easily isolated with an instruction like ANDI.

Bit Name Meaning

15 OUT3OFLO Output 3 overflow

14 OUT2OFLO Output 2 overflow

13 OUT1OFLO Output 1 overflow

12 OUT0OFLO Output 0 overflow

11 IN3OFLO Input 3 clip

10 IN2OFLO Input 2 clip

9 IN1OFLO Input 1 clip

8 IN0OFLO Input 0 clip

7 XXX RESERVED

6 XXX RESERVED

5 TB2nTB1 0: Tap button “1” event
1: Tap button “2” event

4 TAPSTKY TAP sticky event, user has
pressed the tap button for

longer than TAPSTKRLD

3 NEWTT New tap tempo value in
TAPTEMPO

2 TAPRE Tap button release event, user
stopped pressing the tap button

1 TAPPE Tap button push event, user
started pressing the tap button

0 TAPDB Debounced tap button level, 0 if
pressed and 1 if not pressed

Flags are valid for as long as the event occurs (i.e. overflow flags) or for 1 sample period (i.e. new tap

value)

Instruction Format
The instruction is a 32-bit word broken into 3 primary fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

“I” Field 0 “R” Field “M” Field

31:25 – “I” field, instruction field

24 – Reserved, set to 0

23:16 – “R” field, generally a core register.

15:0 – “M” field, may be used to point into delay memory, used to address a second register if

required, the 5-bit value for a shift, 16-bit coefficient, etc. LSB aligned field.

For Extended Operations both the R and M fields may be used in a different manner.

FX Core Instruction Set Document Version 1.0 February 2020

Page 11 of 52

Symbols used in instruction descriptions

FXCore notation conventions

+ Arithmetic addition

- Arithmetic subtraction

* Arithmetic multiplication

/ Arithmetic division

~ Bit inversion (1's compliment)

& Bitwise AND

&& Logical AND

| Bitwise OR

|| Logical OR

○+ Bitwise XOR

{A,B} Concatenation of 2 values to create a larger value, i.e. {0x12, 0x34} results in the value

 0x1234
[X] The value in a register or at a specific memory address. X is a register number or a memory

address. I.e [CREG0] (value in core reg 0), [FLAGS] (FLAGS sfr)
|X| Absolute value of X

XY X raised to the Y power

Xb:a Bit range of b to a of value X

@REG Indirect addressing, REG is used as a pointer into another memory

@@REG Indirect addressing, REG is used as a pointer into delay memory without adding address
counter

ImmX An immediate integer value of X bits, unsigned

SImmX An immediate integer value of X bits including a sign bit

S.X An immediate signed fractional value in the range of -1.0 to +0.99.. of 1+X bits

SX.Y An immediate signed real value with X integer bits and Y fractional bits, total length of

1+X+Y bits
CREG Any core register is valid (CREG0-15, ACC32, FLAGS)

CREGNA Only core registers 0 to 15 and ACC32 are valid

MREG Memory register

MEM Delay memory

SFR Special function register

X<<Y Left bit shift of X by the value represented by Y

X>>Y Right bit shift of X by the value represented by Y

There is the 64-bit CPU register for 32x32 MAC ops. While in the core it is not considered a core register

as it cannot be used directly in most instructions.

The FX Core assembler attempts to resolve values based on the type expected in an instruction, an

ADDSI instruction expect a value between -1.0 and +0.999… and will issue an error is the value is outside

that range. An ANDI expects an integer value to use as a mask and will take only the integer portion of

the value. However there may be times the user needs to load a 32-bit fractional value into a register

FX Core Instruction Set Document Version 1.0 February 2020

Page 12 of 52

but there are no 32-bit load commands as the data field is limited to 16-bits in the instruction word. This

can be accomplished by use of the “.l” and “.u” extensions to parameter values. As an example:

// load a 32-bit value into a register, coeff is a 32-bit fractional value, max32 is 0x7FFFFFFF

wrdld r3, (coeff*max32).u // load the upper 16-bits into R3, clear lower 16-bits

ori r3 (coeff*max32).l // load the lower 16-bits so r3 now has the 32-bit fractional coefficient in it

FX Core Instruction Set Document Version 1.0 February 2020

Page 13 of 52

Math Operations

FX Core Instruction Set Document Version 1.0 February 2020

Page 14 of 52

ABS – Absolute value of a core register
Use: ABS CREG

ACC32 = |CREG|

Encoding: 0000 0000 000C CCCC 0000 0000 0000 0000

C: Core register

Description: The absolute value of the core register. The result is placed in ACC32.

Example: ABS R0

CLRACC64 – Clear the 64-bit accumulator
Use: CLRACC64

ACC64 = 0

Encoding: 0000 0010 0000 0000 0000 0000 0000 0000
Description: ACC64 is set to 0x00000000

Example: CLRACC64

ADDI – Add a 16bit signed integer to 32 bit core register, not saturated (modulo 232)
Use: ADDI CREG, SImm16

ACC32 = CREG + {SSSS SSSS SSSS SSSS, SImm16}

Encoding: 0000 0100 000C CCCC SIII IIII IIII IIII

C: Core register

SI: Signed Imm16

Description: SImm16 is LSB aligned, the sign bit is extended across bits 31:16 prior to the 32-bit add. The

result is placed in ACC32 and is allowed to “roll over”.

Example: ADDI R0, -1

ADD – Unsigned addition of two core registers, not saturated (modulo 232)
Use: ADD CREGX, CREGY

ACC32 = CREGX + CREGY

Encoding: 0000 0110 000X XXXX 0000 0000 000Y YYYY

X: Core register X

Y: Core register Y

Description: Two core registers are added together. The result is placed in ACC32 and is allowed to “roll

over”.

Example: ADD R2, R3

ADDS – Signed addition of two core registers, saturated
Use: ADDS CREGX, CREGY

ACC32 = CREGX + CREGY

Encoding: 0000 1000 000X XXXX 0000 0000 000Y YYYY

FX Core Instruction Set Document Version 1.0 February 2020

Page 15 of 52

X: Core register X

Y: Core register Y

Description: Two core registers are added together. The result is placed in ACC32 and is saturated to the

maximum positive (0x7FFFFFFF) or negative (0x80000000) value as appropriate

Example: ADDS ACC32, R0

ADDSI – Signed addition of 32-bit S.31 core register with 16-bit S.15 (MSB aligned),

saturated
Use: ADDS CREG, S.15

ACC32 = CREG + {S.15<<16, 0x0000]}

Encoding: 0000 1010 000C CCCC SFFF FFFF FFFF FFFF

C: Core register

S: Sign bit

F: Fractional bits

Description: Prior to the 32-bit addition, the 16-bit S.15 immediate value is shifted left by 16 bits and

zero padded, converting the S.15 immediate value into an S.31 value. . The result is placed in ACC32 and

is saturated to the maximum positive (0x7FFFFFFF) or negative (0x80000000) S.31 signed fractional

value.

Example ADDSI R0, 0.5

SUB – Unsigned subtraction of two core registers, not saturated (modulo 232)
Use: SUB CREGX, CREGY

ACC32 = CREGX - CREGY

Encoding: 0000 1100 000X XXXX 0000 0000 000Y YYYY

X: Core register

Y: Core register

Description: Unsigned subtraction of two core registers. The result is placed in ACC32 and is allowed to

“roll over”.

SUBS – Signed subtraction of two core registers, saturated
Use: SUBS CREGX, CREGY

ACC32 = CREGX - CREGY

Encoding: 0000 1110 000X XXXX 0000 0000 000Y YYYY

X: Core register

Y: Core register

Description: Signed subtraction of core register Y from core register X. The result is placed in ACC32 and

is saturated to the maximum positive (0x7FFFFFFF) or negative (0x80000000) value as appropriate

Example SUBS R0, R1

FX Core Instruction Set Document Version 1.0 February 2020

Page 16 of 52

SL – Shift left logical using an immediate 5-bit value
Use: SL CREG, Imm5

ACC32 = CREG << Imm5, ACC320 <- 0

Encoding: 0001 0000 000C CCCC 0000 0000 000I IIII

C: Core register

I: Imm5

Description: CREG is shifted left by the number of bit positions specified by the Imm5 value. Zeros are

inserted into the bit positions emptied by the shift. The result is placed in ACC32.

Example: SL R0, 8

SLR – Shift left logical using the 5-LSBs of a core register
Use: SLR CREGX, CREGY

ACC32 = CREGX << CREGY4:0, ACC320 <- 0

Encoding: 0001 0010 000X XXXX 0000 0000 000Y YYYY

X: Core register

Y: Core register

Description: CREGX is shifted left by the number of bit positions specified by CREGY4:0. Zeros are inserted

into the bit positions emptied by the shift. The result is placed in ACC32.

Example: SLR R0, R1

SLS – Shift left arithmetic with saturation using an immediate 5-bit value
Use: SLS CREG, Imm5

ACC32 = CREG << Imm5, ACC320 <- 0 or saturate to max +/- value

Encoding: 0001 0100 000C CCCC 0000 0000 000I IIII

C: Core register

I: Imm5

Description: CREG is shifted left by the number of bit positions specified by the Imm5 value. Zeros are

inserted into the bit positions emptied by the shift. The result is placed in ACC32 and is saturated to the

maximum positive (0x7FFFFFFF) or negative (0x80000000) value as appropriate

Example SLS R0, 8

SLSR – Shift left arithmetic with saturation using the 5-LSBs of a core register
Use: SLSR CREGX, CREGY

ACC32 = CREGX << CREGY4:0, ACC320 <- 0 or saturate to max +/- value

Encoding: 0001 0110 000X XXXX 0000 0000 000Y YYYY

X: Core register

Y: Core register

Description: CREGX is shifted left by the number of bit positions specified by CREGY4:0. Zeros are inserted

into the bit positions emptied by the shift. The result is placed in ACC32 and is saturated to the

FX Core Instruction Set Document Version 1.0 February 2020

Page 17 of 52

maximum positive (0x7FFFFFFF) or negative (0x80000000) value as appropriate

Example SLSR R0, R1

SR – Shift right logical using an immediate 5-bit value
Use: SR CREG, Imm5

ACC32 = CREG >> Imm5, 0 -> ACC3231

Encoding: 0001 1000 000C CCCC 0000 0000 000I IIII

C: Core register

I: Imm5

Description: CREG is shifted right by the number of bit positions specified by the Imm5 value. Zeros are

inserted into the bit positions emptied by the shift. The result is placed in ACC32

Example: SR R0, 8

SRR – Shift right logical using the 5-LSBs of a core register
Use: SRR CREGX, CREGY

ACC32 = CREGX >> CREGY4:0, 0 -> ACC3231

Encoding: 0001 1010 000X XXXX 0000 0000 000Y YYYY

X: Core register

Y: Core register

Description: CREGX is shifted right by the number of bit positions specified by CREGY4:0. Zeros are

inserted into the bit positions emptied by the shift. The result is placed in ACC32

Example: SRR R0, R1

SRA – Shift right arithmetic using an immediate 5-bit value
Use: SRA CREG, Imm5

ACC32 = CREG >> Imm5, CREG31 -> ACC3231

Encoding: 0001 1100 000C CCCC 0000 0000 000I IIII

C: Core register

I: Imm5

Description: CREG is shifted right by the number of bit positions specified by the Imm5 value. The sign

bit of CREG (CREG31) is inserted into the bit positions emptied by the shift. The result is placed in ACC32

Example: SRA R0, 8

SRAR – Shift right arithmetic using the 5-LSBs of a core register
Use: SRAR CREGX, CREGY

ACC32 = CREGX >> CREGY4:0, CREGX31 -> ACC3231

Encoding: 0001 1110 000X XXXX 0000 0000 000Y YYYY

X: Core register

Y: Core register

FX Core Instruction Set Document Version 1.0 February 2020

Page 18 of 52

Description: CREGX is shifted right by the number of bit positions specified by CREGY4:0. The sign bit of

CREGX (CREGX31) is inserted into the bit positions emptied by the shift. The result is placed in ACC32

Example: SRAR R0, R1

MACRR – Multiply and accumulate using 64-bit accumulator (S.63), 32-bit (S.31) x 32-bit

(S.31) multiply with saturation
Use: MACRR CREGX, CREGY

ACC64 = ACC64 + CREGX * CREGY

Encoding: 0010 0000 000X XXXX 0000 0000 000Y YYYY

X: Core register

Y: Core register

Description: CREGX is multiplied by CREGY and added to the 64-bit accumulator ACC64. ACC64 is

saturated to the maximum positive (0x7FFFFFFFFFFFFFFF) or negative (0x8000000000000000) value as

appropriate

Example: MACRR R0, R1

MACRI – Multiply and accumulate using 64-bit accumulator (S.63), 32-bit (S.31) x 16-bit

(S.15) coefficient multiply
Use: MACRI CREG, S.15

ACC64 = ACC64 + CREG * {S.15, 0x0000}

Encoding: 0010 0010 000C CCCC SFFF FFFF FFFF FFFF

C: Core register

S: Sign bit

F: Fractional bits

Description: CREG is multiplied by the S.15 coefficient zero padded to 32-bits and added to the 64-bit

accumulator ACC64. ACC64 is saturated to the maximum positive (0x7FFFFFFFFFFFFFFF) or negative

(0x8000000000000000) value as appropriate

Example: MACRI R0, -0.8

MACRD – Multiply and accumulate using 64-bit accumulator (S.63), 32-bit (S.31) x 16-bit

(S.15) delay memory multiply
Use: MACRD CREG, ADDRESS

ACC64 = ACC64 + CREG * {[ADDRESS], 0X0000}

Encoding: 0010 0100 000C CCCC 0AAA AAAA AAAA AAAA

C: Core register

A: Address

Description: CREG is multiplied by the S.15 data at ADDRESS zero padded to 32-bits and added to the 64-

bit accumulator ACC64. ACC64 is saturated to the maximum positive (0x7FFFFFFFFFFFFFFF) or negative

(0x8000000000000000) value as appropriate

Example: MACRD R0, 100

FX Core Instruction Set Document Version 1.0 February 2020

Page 19 of 52

MACID – Multiply and accumulate using 64-bit accumulator (S.63), 8-bit (S.7) coefficient

multiply x 16-bit (S.15) delay memory
Use: MACID S.7, ADDRESS

ACC64 = ACC64 + {S.7,0x000000} * {[ADDRESS], 0X0000}

Encoding: 0010 0110 SFFF FFFF 0AAA AAAA AAAA AAAA

S: Sign bit

F: Fractional bits

A: Address

Description: The S.7 coefficient is zero padded to 32-bits and is multiplied by the S.15 data at ADDRESS

zero padded to 32-bits then added to the 64-bit accumulator ACC64. ACC64 is saturated to the

maximum positive (0x7FFFFFFFFFFFFFFF) or negative (0x8000000000000000) value as appropriate

Example: MACHID 0.5, 111

MACHRR – Multiply and accumulate using 64-bit accumulator (S3.60), 32-bit (S.31) x 32-

bit (S.31 shifted to S3.28) multiply
Use: MACHRR CREGX, CREGY

ACC64 = ACC64 + CREGX * (CREGY >> 3)

Encoding: 0010 1000 000X XXXX 0000 0000 000Y YYYY

X: Core register

Y: Core register

Description: CREGX is multiplied by CREGY which has been arithmetically shifted 3 bits to the right to

create 3-bits of headroom for addition then added to the 64-bit accumulator ACC64. ACC64 is saturated

to the maximum positive (0x7FFFFFFFFFFFFFFF) or negative (0x8000000000000000) value as

appropriate

Example: MACHRR R0, ACC32

MACHRI – Multiply and accumulate using 64-bit accumulator (S3.60), 32-bit (S.31) x 16-

bit (S.15 shifted right and zero appended to S3.28) multiply
Use: MACHRI CREG, S.15

ACC64 = ACC64 + CREG * {(S.15 >> 3), 0x0000}

Encoding: 0010 1010 000C CCCC SFFF FFFF FFFF FFFF

C: Core register

S: Sign bit

F: Fractional bits

Description: CREGX is multiplied by the S.15 coefficient which has been arithmetically shifted 3 bits to

the right to create 3-bits of headroom for addition and zero padded to 32-bits then added to the 64-bit

accumulator ACC64. ACC64 is saturated to the maximum positive (0x7FFFFFFFFFFFFFFF) or negative

(0x8000000000000000) value as appropriate

Example: MACHRI R0, -0.8

FX Core Instruction Set Document Version 1.0 February 2020

Page 20 of 52

MACHRD – Multiply and accumulate using 64-bit accumulator (S3.60), 32-bit (S.31) x 16-

bit (S.15 shifted right to S3.15 and zero appended to S3.28) delay memory
Use: MACHRD CREG, ADDRESS

ACC64 = ACC64 + CREG * {[ADDRESS]>>3, 0x0000}

Encoding: 0010 1100 000C CCCC 0AAA AAAA AAAA AAAA

C: Core register

A: Address

Description: CREGX is multiplied by the S.15 data at the location specified by ADDRESS which is

arithmetically shifted 3 bits to the right to create 3-bits of headroom for addition and zero padded to 32-

bits then added to the 64-bit accumulator ACC64. ACC64 is saturated to the maximum positive

(0x7FFFFFFFFFFFFFFF) or negative (0x8000000000000000) value as appropriate

Example: MACHRD R0, 100

MACHID – Multiply and accumulate using 64-bit accumulator (S3.60), 8-bit (S.7 zero

appended to S.32) coefficient x 16-bit (S.15 shifted right to S3.15 and zero appended to

S3.28) delay memory multiply
Use: MACID S.7, ADDRESS

ACC64 = ACC64 + {S.7, 0x000000} * {[ADDRESS]>>3, 0x0000}

Encoding: 0010 1110 SFFF FFFF 0AAA AAAA AAAA AAAA

S: Sign bit

F: Fractional bits

A: Address

Description: The S.7 coefficient is zero padded to 32-bits and is multiplied by the S.15 data at the

location specified by ADDRESS which is arithmetically shifted 3 bits to the right to create 3-bits of

headroom for addition and zero padded to 32-bits then added to the 64-bit accumulator ACC64. ACC64

is saturated to the maximum positive (0x7FFFFFFFFFFFFFFF) or negative (0x8000000000000000) value as

appropriate

Example: MACHID –0.8, 100

MULTRR – Saturated multiply of two core registers, 32-bit (S.31) x 32-bit (S.31), 32 MSBs

of the 64-bit product in ACC32
Use: MULTRR CREGX, CREGY

ACC32 = (CREGX * CREGY)63:32

Encoding: 0011 0000 000X XXXX 0000 0000 000Y YYYY

X: Core register

Y: Core register

Description: CREGX is multiplied by CREGY and the 32 MSBs are placed in ACC32. If both CREGX and

CREGY are -1.0 the result will be saturated to the maximum positive (0x7FFFFFFF) value

Example: MULTRR R0, R1

FX Core Instruction Set Document Version 1.0 February 2020

Page 21 of 52

MULTRI – Multiply to 32-bit accumulator (S.31), 32-bit (S.31) x 16-bit (S.15) multiply
Use: MULTRI CREG, S.15

ACC32 = (CREG * {S.15, 0x0000})63:32

Encoding: 0011 0010 000C CCCC SFFF FFFF FFFF FFFF

C: Core register

S: Sign bit

F: Fractional bits

Description: CREG is multiplied by the S.15 coefficient zero padded to 32-bits and the 32 MSBs are

placed in ACC32. If both CREGX and the S.15 coefficient are -1.0 the result will be saturated to the

maximum positive (0x7FFFFFFF) value

Example: MULTRI R0, -0.9

NEG – Negate a core register, 2’s complement saturated
Use: NEG CREG

ACC32 = -CREG

Encoding: 0011 0100 000C CCCC 0000 0000 0000 0000

C: Core register

Description: The 2’s complement of CREG is placed in ACC32. If CREGNE is -1.0 the result will be

saturated to the maximum positive (0x7FFFFFFF) value

Example: NEG R0

LOG2 – Calculate the log base 2 of the absolute value of a register
Use: LOG2 CREG

ACC32 = LOG2 (|CREG|)

Encoding: 0011 0110 000C CCCC 0000 0000 0000 0000

C: Core register

Description: The log2 of the absolute value in CREG is placed in ACC32, the result is in an S5.26 format

where S is the sign followed by the 5 bit integer and 26 bit fraction.

Example: LOG2 R0

EXP2 – Calculate 2^ value of a register
Use: EXP2 CREG

ACC32 = 2CREG

Encoding: 0011 1000 000C CCCC 0000 0000 0000 0000

C: Core register

Description: 2 is raised to the power in CREG then placed in ACC32, the number format in the CREG

must be S5.26 and S must be 1 indicating a negative number.

Example: EXP2 R0

FX Core Instruction Set Document Version 1.0 February 2020

Page 22 of 52

Copy Operations

FX Core Instruction Set Document Version 1.0 February 2020

Page 23 of 52

CPY_CC – Copy from one core register to another
Use: CPY_CC CREGNAX, CREGY

CREGNAX = CREGY

Encoding: 0110 0000 000X XXXX 0000 0000 000Y YYYY

X: Core register

Y: Core register

Description: CREGY is copied to CREGNAX

Example: CPY_CC R0, FLAGS

CPY_CM – Copy from MREG register to core register
Use: CPY_CM CREGNA, MREG

CREGNA = MREG

Encoding: 0110 0010 000C CCCC 0000 0000 0MMM MMMM

C: Core register

M: MREG register

Description: MREG is copied to CREGNA

Example: CPY_CM R0, MR64

CPY_CS – Copy from special function register (SFR) to core register
Use: CPY_CS CREGNA, SFR

CREGNA = SFR

Encoding: 0110 0100 000C CCCC 0000 0000 00SS SSSS

C: Core register

S: SFR register

Description: SFR is copied to CREGNA. Note that some SFRs are 16 bit and may be MSB or LSB aligned or

may be write only and not readable (i.e. OUT0) please see the “Special Function Registers” section for

further information.

Example: CPY_CS R0, IN0

CPY_MC – Copy from core register to MREG register
Use: CPY_MC MREG, CREG

MREG = CREG

Encoding: 0110 0110 000C CCCC 0000 0000 0MMM MMMM

C: Core register

M: MREG register

Description: CREG is copied to MREG

Example: CPY_MC MR17, FLAGS

FX Core Instruction Set Document Version 1.0 February 2020

Page 24 of 52

CPY_SC – Copy from core register to special function register (SFR)
Use: CPY_SC SFR, CREG

SFR = CREG

Encoding: 0110 1000 000C CCCC 0000 0000 00SS SSSS

C: Core register

S: SFR register

Description: CREG is copied to SFR. Note that some SFRs are not 32-bit and may be MSB or LSB aligned

or may be read only and not writeable (i.e. IN0) please see the “Special Function Registers” section for

further information.

Example: CPY_SC OUT0, R0

CPY_CMX – Copy from MREG register to core register using a second core register as the

index register to address the MREG

Use: CPY_CMX CREGNAX, CREGY

CREGNAX = MREG(@CREGY6:0)

Encoding: 0110 1010 000X XXXX 0000 0000 000Y YYYY

X: Core register

Y: Core register

Description: CREGY6:0 are used to address which MREG register to read. This allows the MREG registers

to be used as a look up table if they were initialized to values using .MREG directives

Example: CPY_CMX R0, R1

FX Core Instruction Set Document Version 1.0 February 2020

Page 25 of 52

Load/store Operations

FX Core Instruction Set Document Version 1.0 February 2020

Page 26 of 52

RDACC64U – Copy the upper 32-bits from the 64-bit accumulator to a core register
Use: RDACC64U CREGNA

CREGNA = ACC6463:32

Encoding: 1000 0000 000C CCCC 0000 0000 0000 0000

C: Core register

Description: ACC6463:32 is copied to CREGNA

Example: RDACC64U R0

RDACC64L – Copy the lower 32-bits from the 64-bit accumulator to a core register
Use: RDACC64L CREGNA

CREGNA = ACC6431:0

Encoding: 1000 0010 000C CCCC 0000 0000 0000 0000

C: Core register

Description: ACC6431:0 is copied to CREGNA

Example: RDACC64L R0

LDACC64U – Load the upper 32-bits of the 64-bit accumulator from a core register
Use: LDACC64U CREG

ACC6463:32 = CREG

Encoding: 1000 0100 000C CCCC 0000 0000 0000 0000

C: Core register

Description: CREG is copied to ACC6463:32

Example: LDACC64U R0

LDACC64L – Load the lower 32-bits of the 64-bit accumulator from a core register
Use: LDACC64L CREG

ACC6431:0 = CREG

Encoding: 1000 0110 000C CCCC 0000 0000 0000 0000

C: Core register

Description: CREG is copied to ACC6431:0

Example: LDACC64L R0

RDDEL – Read from delay memory into a core register using an immediate address
Use: RDDEL CREGNA, ADDRESS

CREGNA = {[Address], 0x0000}

Encoding: 1000 1000 000C CCCC 0AAA AAAA AAAA AAAA

C: Core register

A: Address

FX Core Instruction Set Document Version 1.0 February 2020

Page 27 of 52

Description: The data at ADDRESS is zero appended and placed in CREGNA

Example: RDDEL R0, 200

WRDEL – Write to delay memory from a core register using an immediate address
Use: WRDEL ADDRESS, CREG

[ADDRESS] = CREG31:16

Encoding: 1000 1010 000C CCCC 0AAA AAAA AAAA AAAA

C: Core register

A: Address

Description: CREG31:16 is written to ADDRESS.

Example: WRDEL R0, 200

RDDELX – Read from delay memory into a core register using a second core register as

the index register to address the delay memory
Use: RDDELX CREGNAX, CREGY

CREGNAX = {[@CREGY14:0], 0x0000}

Encoding: 1000 1100 000X XXXX 0000 0000 000Y YYYY

X: Core register

Y: Core register

Description: CREGY14:0 are used as the address into delay memory. The data at this address is zero

appended and placed in CREGNAX

Example: RDDELX R0, ACC32

WRDELX – Write the value in a core register to delay memory using a second core

register as the index register to address the delay memory
Use: WRDELX CREGX, CREGY

@CREGX14:0 = CREGY31:16

Encoding: 1000 1110 000X XXXX 0000 0000 000Y YYYY

X: Core register

Y: Core register

Description: CREGX14:0 are used as the address into delay memory. CREGY31:16 are written to this address.

Example: WRDELX R0, ACC32

RDDIRX – Read from delay memory into a core register using a second core register as

the index register to address the delay memory without adding address counter
Use: RDDIRX CREGNAX, CREGY

CREGNAX = { [@@CREGY14:0], 0x0000}

Encoding: 1001 0000 000X XXXX 0000 0000 000Y YYYY

X: Core register

FX Core Instruction Set Document Version 1.0 February 2020

Page 28 of 52

Y: Core register

Description: CREGY14:0 are used as the absolute address into delay memory, the address counter is not

added to this address. The data at this address is zero appended and placed in CREGNAX

Example: RDDIRX R0, ACC32

WRDIRX – Write the value in a core register to delay memory using a second core register

as the index register to address the delay memory without adding address counter
Use: WRDIRX CREGX, CREGY

@@CREGX14:0 = CREGY31:16

Encoding: 1001 0010 000X XXXX 0000 0000 000Y YYYY

X: Core register

Y: Core register

Description: CREGX14:0 are used as the address into delay memory, the address counter is not added to

this address. CREGY31:16 are written to this address.

Example: WRDIRX R0, ACC32

SAT64 – Copy the 32 MSBs from ACC64 (S3.60), shift left 3 bits and saturate to an S.31

format and place into core register
Use: SAT64 CREGNA

CREGNA = ACC6463:32 << 3 with saturation

Encoding: 1001 0100 000C CCCC 0000 0000 0000 0000

C: Core register

Description: ACC6463:32 are shifted left 3 bit to remove the headroom added by instructions like

MACHRR. The result is placed in CREGNA and is saturated to the maximum positive (0x7FFFFFFF) or

negative (0x80000000) value as appropriate

Example: SAT64 R0

WRDLD – Load a 16-bit immediate value to the upper 16-bits of a core register, 0s to LSBs
Use: WRDLD CREGNA, Imm16

CREGNA = {Imm16, 0x0000}

Encoding: 1001 0110 000C CCCC IIII IIII IIII IIII

C: Core register

I: 16-bit immediate value

Description: The 16-bit immediate value is 0 appended and placed in CREGNA. Note that a WRDLD

instruction immediately followed by an ORI instruction can be used to load a 32-bit immediate value

into ACC32

Example: WRDLD 0x4711

FX Core Instruction Set Document Version 1.0 February 2020

Page 29 of 52

Logic Operations

FX Core Instruction Set Document Version 1.0 February 2020

Page 30 of 52

INV – Invert (1’s comp) core register
Use: INV CREG

ACC32 = ~CREG

Encoding: 1010 0000 000C CCCC 0000 0000 0000 0000

C: Core register

Description: Every bit in CREG is inverted (1’s comp) and the result is placed in ACC32

Example: INV R0

OR – Bitwise OR of 2 core registers to ACC32
Use: OR CREGX, CREGY

ACC32 = CREGX | CREGY

Encoding: 1010 0010 000X XXXX 0000 0000 000Y YYYY

X: Core register

Y: Core register

Description: CREGX and CREGY are ORed together and the result is placed in ACC32

Example: OR R0, R1

ORI – Bitwise OR of core register with a 16-bit immediate value 0 extended to ACC32
Use: ORI CREG, Imm16

ACC32 = CREG | {0x0000, Imm16}

Encoding: 1010 0100 000C CCCC IIII IIII IIII IIII

C: Source/destination core register

I: 16-bit immediate value

Description: The Imm16 value is 0 extended and ORed with CREG and the result is placed in ACC32. Note

that a WRDLD instruction immediately followed by an ORI instruction can be used to load a 32-bit

immediate value into ACC32

Example: ORI R0, 0x4711

AND – Bitwise AND of 2 core registers to ACC32
Use: AND CREGX, CREGY

ACC32 = CREGX & CREGY

Encoding: 1010 0110 000X XXXX 0000 0000 000Y YYYY

X: Core register

Y: Core register

Description: CREGX and CREGY are ANDed together and the result is placed in ACC32

Example: AND R0, R1

FX Core Instruction Set Document Version 1.0 February 2020

Page 31 of 52

ANDI – Bitwise AND of core register with a 16-bit immediate value 0 extended to ACC32
Use: ANDI CREG, Imm16

ACC32 = REGD & {0x0000, Imm16}

Encoding: 1010 1000 000C CCCC IIII IIII IIII IIII

C: Core register

I: 16-bit immediate value

Description: The Imm16 value is 0 extended and ANDed with CREG and the result is placed in ACC32.

Example: ANDI FLAGS, 0x0100

XOR – Bitwise XOR of 2 core registers to ACC32
Use: XOR CREGX, CREGY

ACC32 = CREGX ○+ CREGY

Encoding: 1010 1010 000X XXXX 0000 0000 000Y YYYY

X: Core register

Y: Core register

Description: CREGX and CREGY are XORed together and the result is placed in ACC32

Example: XOR R0, ACC32

XORI – Bitwise XOR of core register with a 16-bit immediate value 0 extended to ACC32
Use: XORI CREG, Imm16

ACC32 = CREG ○+ [0x0000, Imm16]

Encoding: 1010 1100 000C CCCC IIII IIII IIII IIII

C: Core register

I: 16-bit immediate value

Description: The Imm16 value is 0 extended and XORed with CREG and the result is placed in ACC32.

Example: ANDI FLAGS, 0x0100

JGEZ – Jump if core register value is >= 0
Use: JGEZ CREG, OFFSET

If (CREG >= 0) PC = PC + OFFSET

Encoding: 1010 1110 000C CCCC 0000 oooo oooo oooo

C: Core register

o: Offset added to address counter, positive only

Description: If CREG is greater than or equal to zero then the offset is added to the current program

counter (PC). OFFSET is always positive no back jumping allowed. Current PC + OFFSET must not exceed

the address of the last instruction within the FXCore program.

Example: JGEZ R0, Vader

FX Core Instruction Set Document Version 1.0 February 2020

Page 32 of 52

JNEG – Jump if core register value is < 0
Use: JNEG CREG, OFFSET

If (CREG < 0) PC = PC + OFFSET

Encoding: 1011 0000 000C CCCC 0000 oooo oooo oooo

C: Core register

o: Offset added to address counter, positive only

Description: If CREG is less than zero then the offset is added to the current program counter (PC).

OFFSET is always positive no back jumping allowed. Current PC + OFFSET must not exceed the address of

the last instruction within the FXCore program.

Example: JNEG R0, Yoda

JNZ – Jump if core register value is != 0
Use: JNZ CREG, OFFSET

If (CREG!= 0) PC = PC + OFFSET

Encoding: 1011 0010 000C CCCC 0000 oooo oooo oooo

C: Core register

o: Offset added to address counter, positive only

Description: If CREG is not equal to zero then the offset is added to the current program counter (PC).

OFFSET is always positive no back jumping allowed. Current PC + OFFSET must not exceed the address of

the last instruction within the FXCore program.

Example: JNZ R0, Luke

JZ – Jump if core register value = 0
Use: JZ CREG, OFFSET

If (CREG == 0) PC = PC + OFFSET

Encoding: 1011 0100 000C CCCC 0000 oooo oooo oooo

C: Core register

o: Offset added to address counter, always positive no back jumping allowed

Description: If CREG is equal to zero then the offset is added to the current program counter (PC).

OFFSET is always positive no back jumping allowed. Current PC + OFFSET must not exceed the address of

the last instruction within the FXCore program.

Example: JZ R0, Leia

JZC – Jump if core register value is different sign from acc32
Use: JZC CREG, OFFSET

If (SGN(CREG) != SGN(ACC32)) PC = PC + OFFSET

Encoding: 1011 0110 000C CCCC 0000 oooo oooo oooo

C: Core register

o: Offset added to address counter, positive only

Description: If the sign of CREG is not equal to the sign of ACC32 then the offset is added to the current

FX Core Instruction Set Document Version 1.0 February 2020

Page 33 of 52

program counter (PC). OFFSET is always positive no back jumping allowed. Current PC + OFFSET must

not exceed the address of the last instruction within the FXCore program.

Example: JZ R0, Chewbacca

JMP – Jump always
Use: JMP OFFSET

PC = PC + OFFSET

Encoding: 1011 1000 0000 0000 0000 oooo oooo oooo

o: Offset added to address counter, positive only

Description: OFFSET is added to the current program counter (PC). OFFSET is always positive no back

jumping allowed. Current PC + OFFSET must not exceed the address of the last instruction within the

FXCore program.

Example: JMP, ObiWan

FX Core Instruction Set Document Version 1.0 February 2020

Page 34 of 52

Extended Operations

FX Core Instruction Set Document Version 1.0 February 2020

Page 35 of 52

APA – First instruction for all-pass filter with fixed values
Use: APA S.7, ADDRESS

ACC32 = [ADDRESS]*S.7 +ACC32, R15=[ADDRESS]

Encoding: 1100 0000 SFFF FFFF 0AAA AAAA AAAA AAAA

S: Sign Bit

F: Fractional bits

A: Address of tail of all-pass delay block

Description: ACC32 holds the input to the all-pass and will be over written, R15 (PARAM0) will be

overwritten with the tail of the all-pass delay block. APA and APB should be used as a pair to create the

all-pass. Note that the coefficient in APA should be the inverse (2’s comp) of the coefficient in APB, i.e. if

APB is a positive coefficient then APA should be negative

Example: APA -0.4, 200

APB – Second instruction for all-pass filter with fixed values
Use: APB S.7, ADDRESS

[ADDRESS] = ACC32, ACC32 = (ACC32 * S.7) + R15

Encoding: 1100 0010 SFFF FFFF 0AAA AAAA AAAA AAAA

S: Sign Bit

F: Fractional bits

A: Address of head of all-pass delay block

Description: R15 (PARAM0) must have the tail of the all-pass delay block from the preceding APA, ACC32

will hold the result of the all-pass. APA and APB should be used as a pair to create the all-pass. Note that

the coefficient in APB should be the inverse (2’s comp) of the coefficient in APA, i.e. if APA is a negative

coefficient then APB should be positive

Example: APB 0.4, 0

APRA – First instruction for all-pass filter using register for coefficient value
Use: APRA CREGN, ADDRESS

ACC32 = [ADDRESS]*-CREGN + ACC32, R15=[ADDRESS]

Encoding: 1100 0100 000C CCCC 0AAA AAAA AAAA AAAA

C: Core register

A: Address of tail of all-pass delay block

Description: ACC32 holds the input to the all-pass and will be over written, R15 (PARAM0) will be

overwritten with the tail of the all-pass delay block. APRA and APRB should be used as a pair to create

the all-pass. Note that APRA will multiply the memory value read from the tail of the all-pass delay block

with the 2’s complement of the all-pass coefficient within CREGN

Example: APRA R0, 200

FX Core Instruction Set Document Version 1.0 February 2020

Page 36 of 52

APRB – Second instruction for all-pass filter using register for coefficient value
Use: APRB CREGN, ADDRESS

[ADDRESS] = ACC32, ACC32 = (ACC32* CREGN) + R15

Encoding: 1100 0110 000C CCCC 0AAA AAAA AAAA AAAA

C: Core register

A: Address of head of all-pass delay block

Description: R15 (PARAM0) must have the tail of the all-pass delay block from the preceding APRA,

ACC32 will hold the result of the all-pass. APRA and APRB should be used as a pair to create the all-pass

Example: APRB R0, 0

APRRA – First instruction for all-pass filter using register for both values
Use: APRRA CREGNX, CREGNY

ACC32 = @CREGNY14:0*-CREGNX + ACC32, R15=[CREGNY14:0]

Encoding: 1100 1000 000X XXXX 0000 0000 000Y YYYY

X: Register that holds the all-pass coefficient

Y: Register that holds the address of tail of all-pass delay block

Description: ACC32 holds the input and will be over written , R15 (PARAM0) will be overwritten with the

tail of the all-pass delay block. APRRA and APRRB should be used as a pair to create the all-pass. Note

that APRRA will multiply the memory value read from the tail of the all-pass delay block with the 2’s

complement of the all-pass coefficient within CREGNX

Example: APRRA R0, R1

APRRB – Second instruction for all-pass filter using register for both values
Use: APRRB CREGNX, CREGNY

@CREGNY14:0 = ACC32, ACC32 = (ACC32* CREGNX) + R15

Encoding: 1100 1010 000X XXXX 0000 0000 000Y YYYY

X: Register that holds the all-pass coefficient

Y: Register that holds address of head of all-pass delay block

Description: R15 (PARAM0) should have the tail of the all-pass delay block from APRRA, ACC32 will hold

the result of the all-pass. APRRA and APRRB should be used as a pair to create the all-pass

Example: APRRB R0, R1

APMA – First instruction for all-pass filter using MREG for delay
Use: APMA CREGN, MREG

ACC32 = MREG*-CREGN + ACC32, R15=MREG

Encoding: 1100 1100 000C CCCC 0000 0000 0MMM MMMM

C: Register that holds the all-pass coefficient

M: MREG that holds single delay

Description: APMA is part of a pair of instructions to perform an all-pass on a single delay element

located in an MREG, this is useful for a phaser or other single delay AP. ACC32 holds the input and will

FX Core Instruction Set Document Version 1.0 February 2020

Page 37 of 52

be over written, R15 (PARAM0) will be overwritten with value in the MREG. APMA and APMB should be

used as a pair to create the all-pass. Note that APMA will multiply the value read from the all-pass delay

register MREG with the 2’s complement of the all-pass coefficient within CREGN

Example: APMA R0, MR10

APMB – Second instruction for all-pass filter using MREG for delay
Use: APMB CREGN, MREG

MREG = ACC32, ACC32 = (ACC32* CREGN) + R15

Encoding: 1100 1110 000C CCCC 0000 0000 0MMM MMMM

C: Register that holds the all-pass coefficient

M: MREG that holds single delay

Description: R15 (PARAM0) should have value from MREG from APMA, ACC32 will hold the result of the

all-pass. APMA and APMB should be used as a pair to create the all-pass

Example: APMB R0, MR10

CHR – Chorus on delay mem
Use: CHR LFO|W|N, ADDRESS

R1530:16 = Depth in sample set by user, R1531 must be 0, ACC32 = Chorus result

Encoding: 1101 0000 0000 NLLW 0AAA AAAA AAAA AAAA

N: 0 – use positive SIN or COS, 1 – use negative SIN or COS

LFO: LFO to use

W: SIN (0) or COS (1)

A: Address of head of delay block

Description: This instruction will execute a chorus on the delay block starting at ADDRESS using the LFO

and phase as defined in the instruction. R1530:16 (PARAM0) must contain the maximum depth in number

of samples that the chorus will go into the delay and must be less than the length of the delay, R1531

must be 0.

Example: CHR LFO0|SIN, ChorusDelay

PITCH – Pitch shift on delay mem
Use: PITCH RAMP|LENGTH|XFADE, ADDRESS

ACC32 = Pitch result

Encoding: 1101 0010 00XX LL0R 0AAA AAAA AAAA AAAA

X: Crossfade shape to use

L: Block length, 512 (00), 1024 (01), 2048 (10) or 4096 (11)

R: Ramp to use.

A: Address of head of delay block

Description: This instruction will execute a pitch shift through a defined block in delay memory. Please

see the application note “Pitch Shifting in FXCore” for details.

Example: PITCH RMP0|L2048|XF0, Pdelay

FX Core Instruction Set Document Version 1.0 February 2020

Page 38 of 52

SET – Set a user bit high or low using the selected bit of a register
Use: SET USERBIT|N, CREG

USERBIT = CREGN

Encoding: 1101 0100 000C CCCC 0000 0000 00UN NNNN

C: Core register

U: User bit number

N: Bit number within a core register

Description: Bit N of CREG will be written to either USER0 or USER1 pin as determined by USERBIT

Example: SET USER0|15, R0

INTERP – Do a linear interpolation between two samples in a delay line
Use: INTERP CREG, ADDRESS

ACC32 = ([@CREG30:16 + ADDRESS + 1] - [@CREG30:16 + ADDRESS]) * (CREG15:0 << 15) + [@CREG30:16 +

ADDRESS]

Encoding: 1101 0110 000C CCCC 0AAA AAAA AAAA AAAA

C: Core register

A: Base address

Description: Linear interpolation using (CREG30:16 + ADDRESS) as the address of the first sample,

(CREG30:16 + ADDRESS + 1) as the address of the second sample and CREG15:0 as the interpolation

coefficient. CREG15:0 is treated as an unsigned fractional number and a sign bit of “0” is prepended to it.

Please see the application note “Using INTERP in FXCore” for details.

Example: INTERP R0, 200

FX Core Instruction Set Document Version 1.0 February 2020

Page 39 of 52

Reserved Words

FX Core Instruction Set Document Version 1.0 February 2020

Page 40 of 52

The follow are the words reserved in the assembler.

Core Registers
R0 through R15 – 32-bit general purpose register

ACC32 – 32-bit accumulator, not settable by .creg, cleared to 0 on program change

FLAGS – Flag register, read only, may not be used as a destination register

Non-core CPU Registers
ACC64 – 64-bit accumulator S.63 or S3.60 format, only available to 64-bit MAC instructions, not cleared

on program change

SRAM Based Registers
MR0 through MR127 – 32-bit SRAM based registers

Special Function Registers
Write values less than 32-bits in size are LSB aligned. “Settable” indicates if the value of the register can

be set in the program header using a “.SREG” directive

Name Address Description Bits Read/Write Settable

IN0 0 ADC input 0 32 R N

IN1 1 ADC input 1 32 R N

IN2 2 ADC input 2 32 R N

IN3 3 ADC input 3 32 R N

OUT0 4 DAC output 0 32 W N

OUT1 5 DAC output 1 32 W N

OUT2 6 DAC output 2 32 W N

OUT3 7 DAC output 3 32 W N

PIN 8 Raw user input values 16 LSBs R N

SWITCH 9 Debounced user inputs 16 LSBs R N

POT0_K 10 POT0 smoothing coefficient 5 LSBs R/W Y

POT1_K 11 POT1 smoothing coefficient 5 LSBs R/W Y

POT2_K 12 POT2 smoothing coefficient 5 LSBs R/W Y

POT3_K 13 POT3 smoothing coefficient 5 LSBs R/W Y

POT4_K 14 POT4 smoothing coefficient 5 LSBs R/W Y

POT5_K 15 POT5 smoothing coefficient 5 LSBs R/W Y

POT0 16 Raw POT0 value, S.12 format S always 0 13 MSBs R N

POT1 17 Raw POT1 value, S.12 format S always 0 13 MSBs R N

POT2 18 Raw POT2 value, S.12 format S always 0 13 MSBs R N

POT3 19 Raw POT3 value, S.12 format S always 0 13 MSBs R N

POT4 20 Raw POT4 value, S.12 format S always 0 13 MSBs R N

POT5 21 Raw POT5 value, S.12 format S always 0 13 MSBs R N

POT0_SMTH 22 Smoothed POT0 value, S.31 S always 0 32 R N

POT1_SMTH 23 Smoothed POT1 value, S.31 S always 0 32 R N

POT2_SMTH 24 Smoothed POT2 value, S.31 S always 0 32 R N

POT3_SMTH 25 Smoothed POT3 value, S.31 S always 0 32 R N

POT4_SMTH 26 Smoothed POT4 value, S.31 S always 0 32 R N

POT5_SMTH 27 Smoothed POT5 value, S.31 S always 0 32 R N

FX Core Instruction Set Document Version 1.0 February 2020

Page 41 of 52

LFO0_F 28 LFO0 frequency coefficient 32 R/W Y

LFO1_F 29 LFO1 frequency coefficient 32 R/W Y

LFO2_F 30 LFO2 frequency coefficient 32 R/W Y

LFO3_F 31 LFO3 frequency coefficient 32 R/W Y

RAMP0_F 32 RAMP0 frequency coefficient 32 R/W Y

RAMP1_F 33 RAMP1 frequency coefficient 32 R/W Y

LFO0_S 34 LFO0 SINE output 32 R N

LFO0_C 35 LFO0 COSINE output 32 R N

LFO1_S 36 LFO1 SINE output 32 R N

LFO1_C 37 LFO1 COSINE output 32 R N

LFO2_S 38 LFO2 SINE output 32 R N

LFO2_C 39 LFO2 COSINE output 32 R N

LFO3_S 40 LFO3 SINE output 32 R N

LFO3_C 41 LFO3 COSINE output 32 R N

RAMP0_R 42 RAMP0 output 32 R N

RAMP1_R 43 RAMP1 output 32 R N

MAXTEMPO 44 Maximum number of samples allowed
between two tap button presses

32 R/W Y

TAPTEMPO 45 Latest measured tap tempo time 32 R Y

SAMPLECNT 46 Number of sample periods, reset to 0
on program change. 32-bit Unsigned
counter, rolls over.

32 R N

NOISE 47 Random number/noise 32 R N

BOOTSTAT 48 See table in datasheet for bits in this
word

32 R N

TAPSTKRLD1 -- Sets the number of samples that the
tap button must be pressed for the
state to be “sticky”

16 X Y

TAPDBRLD1 -- Tap button debounce time in samples 16 X Y

SWDBRLD1 -- User switch input debounce time in
samples

16 X Y

PRGDBRLD1 -- Program selection switch debounce
time in samples

16 X Y

OFLRLD1 -- Overflow LED on time in samples 16 X Y
1TAPSTKRLD, TAPDBRLD, SWDBRLD, PRGDBRLD and OFLRLD are configuration registers and can only be

preset in the program header, they cannot be read or written by user code.

Other Reserved Words and their value
NOTE: These words and values are used to build values for instructions like CHR or a mask value to use

against the FLAGS or BOOTSTAT registers

Name Value

LFO0 0x0000

LFO1 0x0002

LFO2 0x0004

LFO3 0x0006

FX Core Instruction Set Document Version 1.0 February 2020

Page 42 of 52

SIN 0x00

COS 0x01

POS 0x00

NEG 0x08

RMP0 0x00

RMP1 0x01

L512 0x00

L1024 0X04

L2048 0x08

L4096 0x0C

XF0 0x00

XF1 0x10

XF2 0x20

XF3 0x30

USER0 0x00

USER1 0x20

OUT3OFLO 0x8000

OUT2OFLO 0x4000

OUT1OFLO 0x2000

OUT0OFLO 0x1000

IN3OFLO 0x0800

IN2OFLO 0x0400

IN1OFLO 0x0200

IN0OFLO 0x0100

TB2NTB1 0x0020

TAPSTKY 0x0010

NEWTT 0x0008

TAPRE 0x0004

TAPPE 0x0002

SW0 0x0001

SW1 0x0002

SW2 0x0004

SW3 0x0008

SW4 0x0010

SW0RE 0x0020

SW1RE 0x0040

SW2RE 0x0080

SW3RE 0x0100

SW4RE 0x0200

SW0PE 0x0400

SW1PE 0x0800

SW2PE 0x1000

SW3PE 0x2000

SW4PE 0x4000

TAP 0x0040

PLLRANGE0 0x0001

FX Core Instruction Set Document Version 1.0 February 2020

Page 43 of 52

PLLRANGE1 0x0002

MNS 0x0004

I2CA0 0x0008

I2CA1 0x0010

I2CA2 0x0020

I2CA3 0x0040

I2CA4 0x0080

I2CA5 0x0100

I2CA6 0x0200

PR0 0x0001

PR1 0x0002

PR2 0x0004

PR3 0x0008

PR4 0x0010

PR5 0x0020

PR6 0x0040

PR7 0x0080

PR8 0x0100

PR9 0x0200

PR10 0x0400

PR11 0x0800

PR12 0x1000

PR13 0x2000

PR14 0x4000

PR15 0x8000

FX Core Instruction Set Document Version 1.0 February 2020

Page 44 of 52

Assembler Directives

FX Core Instruction Set Document Version 1.0 February 2020

Page 45 of 52

.EQU – Equate a name to a value
Use: .EQU NAME VALUE

When LABEL is used in an instruction it is replaced with VALUE by the assembler. VALUE may be another

NAME, a numeric value or a simple arithmetic operation. Legal arithmetic operations are +, -, *, /, (,)

and ^ (raise to a power)

Examples:

.equ fs 48000; define sample rate

.equ t 1/fs

.equ pi 3.141592654 ; value of pi

.equ e 2.718281828 ; value of e

.equ freq 500 ; desired corner frequency

// e^(-2*PI*F*t) to calculate coeff for a single pole IIR

.equ coeff e^(-2*pi*freq*t); note negative sign inside parenthesis

.RN – Rename a register
Use: .RN ALTNAME REGISTER

Allows a user to rename a register to give it a more descriptive name in their program. A register may

only have one alternate name in a given program.

Examples:

.rn hp_filt R0 // R0 can now be referenced as hp_filt in user code

.MEM – Declare a memory block
Use: .MEM NAME SIZE

Declares a delay memory block called NAME of size SIZE+1

Examples:

.mem delay0 1000

.equ fs 48000

.mem delay1 fs/4; can use values defined in .equ statements and same math operations

.CREG – Set a core register to an initial value when program is loaded
Use: .CREG CORE_REGISTER VALUE

Set an initial value for a core register prior to the first iteration of a program. An optional “.i” may be

added to the directive to indicate the value is to be treated as an integer (this will also truncate any

fractional portion) rather than a fractional value.

Examples:

.creg r1 ; will error as 1.0 exceeds maximum S.31 format

.creg hp_filt coeff; can use aliased name and value from .equ

.creg r2 -1.0 ;

.creg.i r3 pi ; handy to calculate a counter value and use only the integer portion

FX Core Instruction Set Document Version 1.0 February 2020

Page 46 of 52

.MREG – Set a memory register to an initial value when program is loaded
Use: .MREG MEM_REGISTER VALUE

Set an initial value for a memory register prior to the first iteration of a program. An optional “.i” may be

added to the directive to indicate the value is to be treated as an integer (this will also truncate any

fractional portion) rather than a fractional value.

Examples:

.mreg mr1 0.005; will preset MR1 to 0.005 prior to first execution of the program

.mreg hp_filt coeff; can use aliased name and value from .equ

.mreg mr2 -1.0;

.SREG – Set a special function register to an initial value when program is loaded
Use: .SREG SPECIAL_FUNCTION_REGISTER VALUE

Set an initial value for a memory register prior to the first iteration of a program. An optional “.i” may be

added to the directive to indicate the value is to be treated as an integer (this will also truncate any

fractional portion) rather than a fractional value.

Examples:

.sreg lfo0freq 10;

.sreg chorus_lfo_freq chorus_speed; can use aliased names and values from .equ

.L – Use the lower 16-bits of a 32-bit word in an instruction (appended to value)
Use: ORI r0, 0x12345678.l

Forces the assembler to use only the lower 16-bits of a 32-bit value in an instruction. This is very useful

for loading a 32-bit value into a register.

Examples:

wrdld r0, 0x12345678.u ; loads the upper 16-bits of 0x12345678 into the upper 16-bits of r0

ori r0, 0x12345678.l ; loads the lower 16-bits of 0x12345678 into the lower 16-bits of r0 so r0

 ; now contains 0x12345678

.U – Use the upper 16-bits of a 32-bit word in an instruction (appended to value)
Use: WRDLD r0, 0x12345678.u

Forces the assembler to use only the upper 16-bits of a 32-bit value in an instruction. This is very useful

for loading a 32-bit value into a register.

Examples:

wrdld r0, 0x12345678.u ; loads the upper 16-bits of 0x12345678 into the upper 16-bits of r0

ori r0, 0x12345678.l ; loads the lower 16-bits of 0x12345678 into the lower 16-bits of r0 so r0

 ; now contains 0x12345678

FX Core Instruction Set Document Version 1.0 February 2020

Page 47 of 52

Tap Tempo Operation

FX Core Instruction Set Document Version 1.0 February 2020

Page 48 of 52

The FX Core includes an integrated tap tempo that will monitor button pushes, handle de-bounce and

count the number of sample periods between button pushes. It also includes extended functionality

that can allow the programmer to provide additional features in their product.

In normal operation a user would tap the button twice to indicate the desired tap tempo time in sample

periods. The program has access to the TAPTEMPO register (read only) where the program can read the

number of sample periods between taps. In addition the NEWTT flag is set in the FLAGS register for one

sample period so the program can check if the value has been updated.

If the user waits too long after the first tap then the tap tempo unit will reset and the next tap will be

considered the first tap. This timeout is set by the MAXTEMPO register and is set in samples.

If a user presses and holds the tap button longer than the number of samples set in the TAPSTKRLD

register the TAPSTKY bit in the FLAGS register will be set and remain set for as long as the user presses

the button.

If the user presses and holds the button in excess of TAPSTKRLD on the first press then upon release the

tap tempo unit will reset and the next tap will be considered the first tap of a new tap set. This allows a

program to switch between options based on the user pressing and holding the tap tempo button on

the first tap.

If a user presses and holds the tap tempo button on the second tap the TAPTEMPO count will be

updated per normal operation, the NEWTT flag will be set and the TAPSTKY bit will be set after the

timeout and will remain set as long as the user presses the button. This could be used to adjust a

parameter in the program after tapping in a new value, i.e. the program could divide the tap value by 3

to do a triplet delay.

The TB2nTB1 bit in the FLAGS register indicates if it is the first tap (TB2nTB1 = 0) or second tap (TB2nTB1

= 1)

There are 3 additional flags related to the tap tempo:

TAPPE : Set upon detection of the tap tempo button being pushed

TAPRE : Set upon detection of the tap tempo button being released

TAPDB : The de-bounced level of the TAP input pin

There is an additional SFR named TAPDBRLD that the user can set to the desired debounce time in

samples.

FX Core Instruction Set Document Version 1.0 February 2020

Page 49 of 52

Memory Management

FX Core Instruction Set Document Version 1.0 February 2020

Page 50 of 52

Every sample period a counter is decremented by 1 and the result is added to the addresses in the

instructions to calculate the physical address into the delay memory. By doing this we cause the

memory to act as a circular buffer where we write to a lower address and read from a higher address.

.MEM statements are used to define blocks of memory for use in your code.

Example:

.MEM delaya 1000

This would allocate a block of 1001 memory locations. It is 1 greater than the defined size to allow both

a read and write pointer into the block. When you define a block in this manner a total of 3 symbols are

generated in the assembler, in this example they would be:

delaya : Points to the head (write) address of the block

delaya# : Points to the tail (read) address of the block

delaya! : Is set to the length of the block (1000)

Example:

//Assume core register r0 has the data you want to write to the start of a delay then you would code

//the write as

wrdel r0, delaya // write the value in r0 to start of the delay line

// Reading is similar

rddel acc32, delaya# // read from the tail of the delay and put value in ACC32

The value in memory is stored in S.15 format but will be converted to S.31 format automatically.

FX Core Instruction Set Document Version 1.0 February 2020

Page 51 of 52

FX Core Instruction Set Document Version 1.0 February 2020

Page 52 of 52

Experimental Noize Inc. reserves the right to make changes to, or to discontinue availability of, any

product or service without notice.

Experimental Noize Inc. assumes no liability for applications assistance or customer product design.

Customers are responsible for their products and applications using any Experimental Noize Inc. product

or service. To minimize the risks associated with customer products or applications, customers should

provide adequate design and operating safeguards.

Experimental Noize Inc. make no warranty, expressed or implied, of the fitness of any product or service

for any particular application.

In no even shall Experimental Noize Inc. be liable for any direct, indirect, consequential, punitive, special

or incidental damages including, without limitation, damages for loss and profits, business interruption,

or loss of information arising out of the use or inability to use any product or document, even if

Experimental Noize Inc. has been advised of the possibility of such damage.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Experimental Noize Inc.

products are not designed for and will not be used in connection with any applications where the failure

of such products would reasonably be expected to result in significant personal injury or death (“Safety-

Critical Applications”). Safety-Critical Applications include, without limitation, life support devices and

systems, equipment or systems for the operation of nuclear facilities and weapons systems.

Experimental Noize Inc. products are not designed nor intended for use in military or aerospace

applications or environments. Experimental Noize Inc. products are not designed nor intended for use in

automotive applications.

Experimental Noize Inc.

Scottsdale, AZ USA

www.xnoize.com

sales@xnoize.com

	Introduction
	Block Diagram
	Registers and Memory
	FLAGS Register
	Instruction Format

	Math Operations
	ABS – Absolute value of a core register
	CLRACC64 – Clear the 64-bit accumulator
	ADDI – Add a 16bit signed integer to 32 bit core register, not saturated (modulo 232)
	ADD – Unsigned addition of two core registers, not saturated (modulo 232)
	ADDS – Signed addition of two core registers, saturated
	ADDSI – Signed addition of 32-bit S.31 core register with 16-bit S.15 (MSB aligned), saturated
	SUB – Unsigned subtraction of two core registers, not saturated (modulo 232)
	SUBS – Signed subtraction of two core registers, saturated
	SL – Shift left logical using an immediate 5-bit value
	SLR – Shift left logical using the 5-LSBs of a core register
	SLS – Shift left arithmetic with saturation using an immediate 5-bit value
	SLSR – Shift left arithmetic with saturation using the 5-LSBs of a core register
	SR – Shift right logical using an immediate 5-bit value
	SRR – Shift right logical using the 5-LSBs of a core register
	SRA – Shift right arithmetic using an immediate 5-bit value
	SRAR – Shift right arithmetic using the 5-LSBs of a core register
	MACRR – Multiply and accumulate using 64-bit accumulator (S.63), 32-bit (S.31) x 32-bit (S.31) multiply with saturation
	MACRI – Multiply and accumulate using 64-bit accumulator (S.63), 32-bit (S.31) x 16-bit (S.15) coefficient multiply
	MACRD – Multiply and accumulate using 64-bit accumulator (S.63), 32-bit (S.31) x 16-bit (S.15) delay memory multiply
	MACID – Multiply and accumulate using 64-bit accumulator (S.63), 8-bit (S.7) coefficient multiply x 16-bit (S.15) delay memory
	MACHRR – Multiply and accumulate using 64-bit accumulator (S3.60), 32-bit (S.31) x 32-bit (S.31 shifted to S3.28) multiply
	MACHRI – Multiply and accumulate using 64-bit accumulator (S3.60), 32-bit (S.31) x 16-bit (S.15 shifted right and zero appended to S3.28) multiply
	MACHRD – Multiply and accumulate using 64-bit accumulator (S3.60), 32-bit (S.31) x 16-bit (S.15 shifted right to S3.15 and zero appended to S3.28) delay memory
	MACHID – Multiply and accumulate using 64-bit accumulator (S3.60), 8-bit (S.7 zero appended to S.32) coefficient x 16-bit (S.15 shifted right to S3.15 and zero appended to S3.28) delay memory multiply
	MULTRR – Saturated multiply of two core registers, 32-bit (S.31) x 32-bit (S.31), 32 MSBs of the 64-bit product in ACC32
	MULTRI – Multiply to 32-bit accumulator (S.31), 32-bit (S.31) x 16-bit (S.15) multiply
	NEG – Negate a core register, 2’s complement saturated
	LOG2 – Calculate the log base 2 of the absolute value of a register
	EXP2 – Calculate 2^ value of a register

	Copy Operations
	CPY_CC – Copy from one core register to another
	CPY_CM – Copy from MREG register to core register
	CPY_CS – Copy from special function register (SFR) to core register
	CPY_MC – Copy from core register to MREG register
	CPY_SC – Copy from core register to special function register (SFR)
	CPY_CMX – Copy from MREG register to core register using a second core register as the index register to address the MREG

	Load/store Operations
	RDACC64U – Copy the upper 32-bits from the 64-bit accumulator to a core register
	RDACC64L – Copy the lower 32-bits from the 64-bit accumulator to a core register
	LDACC64U – Load the upper 32-bits of the 64-bit accumulator from a core register
	LDACC64L – Load the lower 32-bits of the 64-bit accumulator from a core register
	RDDEL – Read from delay memory into a core register using an immediate address
	WRDEL – Write to delay memory from a core register using an immediate address
	RDDELX – Read from delay memory into a core register using a second core register as the index register to address the delay memory
	WRDELX – Write the value in a core register to delay memory using a second core register as the index register to address the delay memory
	RDDIRX – Read from delay memory into a core register using a second core register as the index register to address the delay memory without adding address counter
	WRDIRX – Write the value in a core register to delay memory using a second core register as the index register to address the delay memory without adding address counter
	SAT64 – Copy the 32 MSBs from ACC64 (S3.60), shift left 3 bits and saturate to an S.31 format and place into core register
	WRDLD – Load a 16-bit immediate value to the upper 16-bits of a core register, 0s to LSBs

	Logic Operations
	INV – Invert (1’s comp) core register
	OR – Bitwise OR of 2 core registers to ACC32
	ORI – Bitwise OR of core register with a 16-bit immediate value 0 extended to ACC32
	AND – Bitwise AND of 2 core registers to ACC32
	ANDI – Bitwise AND of core register with a 16-bit immediate value 0 extended to ACC32
	XOR – Bitwise XOR of 2 core registers to ACC32
	XORI – Bitwise XOR of core register with a 16-bit immediate value 0 extended to ACC32
	JGEZ – Jump if core register value is >= 0
	JNEG – Jump if core register value is < 0
	JNZ – Jump if core register value is != 0
	JZ – Jump if core register value = 0
	JZC – Jump if core register value is different sign from acc32
	JMP – Jump always

	Extended Operations
	APA – First instruction for all-pass filter with fixed values
	APB – Second instruction for all-pass filter with fixed values
	APRA – First instruction for all-pass filter using register for coefficient value
	APRB – Second instruction for all-pass filter using register for coefficient value
	APRRA – First instruction for all-pass filter using register for both values
	APRRB – Second instruction for all-pass filter using register for both values
	APMA – First instruction for all-pass filter using MREG for delay
	APMB – Second instruction for all-pass filter using MREG for delay
	CHR – Chorus on delay mem
	PITCH – Pitch shift on delay mem
	SET – Set a user bit high or low using the selected bit of a register
	INTERP – Do a linear interpolation between two samples in a delay line

	Reserved Words
	Core Registers
	Non-core CPU Registers
	SRAM Based Registers
	Special Function Registers
	Other Reserved Words and their value

	Assembler Directives
	.EQU – Equate a name to a value
	.RN – Rename a register
	.MEM – Declare a memory block
	.CREG – Set a core register to an initial value when program is loaded
	.MREG – Set a memory register to an initial value when program is loaded
	.SREG – Set a special function register to an initial value when program is loaded
	.L – Use the lower 16-bits of a 32-bit word in an instruction (appended to value)
	.U – Use the upper 16-bits of a 32-bit word in an instruction (appended to value)

	Tap Tempo Operation
	Memory Management

